The Moore-Penrose inverse in rings with involution
نویسندگان
چکیده
منابع مشابه
Moore–Penrose inverse in rings with involution
We study the Moore–Penrose inverse (MP-inverse) in the setting of rings with involution. The results include the relation between regular, MPinvertible and well-supported elements. We present an algebraic proof of the reverse order rule for the MP-inverse valid under certain conditions on MP-invertible elements. Applications to C∗-algebras are given. 2000 Mathematics Subject Classification: 46L...
متن کاملFurther results on the reverse order law for the Moore-Penrose inverse in rings with involution
We present some equivalent conditions of the reverse order law for the Moore–Penrose inverse in rings with involution, extending some well-known results to more general settings. Then we apply this result to obtain a set of equivalent conditions to the reverse order rule for the weighted Moore-Penrose inverse in C∗-algebras.
متن کاملWhen Does the Moore–penrose Inverse Flip?
In this paper, we give necessary and sufficient conditions for the matrix [ a 0 b d ] , over a *-regular ring, to have a Moore-Penrose inverse of four different types, corresponding to the four cases where the zero element can stand. In particular, we study the case where the MoorePenrose inverse of the matrix flips. Mathematics subject classification (2010): 15A09, 16E50, 16W10.
متن کاملMinors of the Moore - Penrose Inverse ∗
Let Qk,n = {α = (α1, · · · , αk) : 1 ≤ α1 < · · · < αk ≤ n} denote the strictly increasing sequences of k elements from 1, . . . , n. For α, β ∈ Qk,n we denote by A[α, β] the submatrix of A with rows indexed by α, columns by β. The submatrix obtained by deleting the α-rows and β-columns is denoted by A[α′, β′]. For nonsingular A ∈ IRn×n, the Jacobi identity relates the minors of the inverse A−1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2019
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1918791x